Creative works

are tools that go out in the world

n

Manipulate[Integrate[1/(1-x^n), $x],\{n, 1,10,1\}]$
n +

$$
\begin{aligned}
& \frac{1}{20}\left(2 \sqrt{2(5+\sqrt{5})} \operatorname{ArcTan}\left[\frac{1-\sqrt{5}+4 x}{\sqrt{2(5+\sqrt{5})}}\right]+\right. \\
& 2 \sqrt{10-2 \sqrt{5}} \operatorname{ArcTan}\left[\frac{1+\sqrt{5}+4 x}{\sqrt{10-2 \sqrt{5}}}\right]-4 \log [1-x]- \\
& (-1+\sqrt{5}) \log \left[1-\frac{1}{2}(-1+\sqrt{5}) x+x^{2}\right]+ \\
& \left.(1+\sqrt{5}) \log \left[1+\frac{1}{2}(1+\sqrt{5}) \mathbf{x}+x^{2}\right]\right]
\end{aligned}
$$

+ 1 http://cm.math.uiuc.edu/

Calculus and Mathematica
At the University of Illinois Urbana-Champaign

Dept of Mathematics Website
Classcomm

About C\&M

- What is C\&M?
- People
- People

Courses

- Syllabi

Student

- Homework Tips
- Homework

Examples

- Download Lessons
- Lab Schedule

Staff
 - Grading Tips
 - Instructor Tips

Handin Systems

- Classcomm

Links

- MathEverywhere
- NetMath
- OSU Program
- Wolfram
© Drupal

If you've taken C\&M or NetMath courses before and would be interested in working with us, please apply. We are currently looking for NetMath mentors for a variety of courses. We hire NetMath mentors and Class Assistants at the beginning of semesters and occasionally during the semester as need arises.

Mathematica News

Mathematica for students through CITES is now available. It can be obtained here. The cost is $\$ 25$ without media (45 MB download) or $\$ 30$ with the CD. It expires on $9 / 1 / 11$ at which time it needs to be renewed. It will be renewed most likely at $\$ 25$ again and will last until the following August or September.

Comments from Students

I am currently a 2nd year Ph.D. student at the University of Minnesota in Geology and want to report the advantages that C\&M DiffEq has given me. It turns out that describing the mathematics of deformation in rocks is simply the flow section of C\&M Diffeq expanded to 3D. If you can find the strain matrix of the rocks (matrix of the diffeq in C\&M), you can get flow paths and watch how the rock deforms. Another one of my advisor's students had been working on this before I came and has developed the theory behind relating these flow paths to rock deformation. It was considered quite neat that I had actually learned how to do this as an undergrad in C\&M. I am using the C\&M DiffEq lessons to teach new geology grad students the mathematics behind our work.

Tech Support

Techs support both the lab machines and the software used in this program.
In the event of a problem, send an e-mail to tech@cm.math.uiuc.edu.

29 Copper

Copper is wonderful stuff. Just wonderful. Many other elements have some kind of a gotcha about them: maybe they are great in every way except they're poisonous, or they would be perfect except they explode when they touch water. Copper has no gotcha-it's just nice stuff all around.

Copper can be toxic, but it takes special effort-eating large amounts of copper sulfate, or routinely eating acidic foods that have been stored in copper containers for a long time.
Extended contact with copper objects rarely causes harm. In fact, copper has antimicrobial properties that make it useful in hospitals for doorknobs and other surfaces on which infections may be passed (though claims of the mystical healing powers of copper bracelets are, of course, nonsense).
Copper is soft enough to be worked using hand tools or modest power tools, yet hard enough to be made into very useful things, especially when alloyed with tin (50) or zinc (30) to create, respectively, bronze or brass. You can even find copper in native metallic form in several places around the world, making it one of the first useful metals (hence "the Bronze Age," which I guess sounds better than "the Copper Alloy Age").
Copper is the only reasonably priced metal that isn't gray, quite a remarkable fact if you think about it. Every single one of the hundred-odd metallic elements is some shade of gray, except gold (79) and copper. Not surprisingly, copper has been used in jewelry since antiquity, where its only real disadvantage is that it tarnishes slowly, while gold remains bright forever (at six thousand times the price).
Unbeknownst to the ancients, copper has another nice attribute: the second-highest electrical conductivity of any metal. Vast quantities of copper are used for electrical wiring, making it as vital to the modern age as it was to the Bronze Age.

Brass, a copper alloy, has been used in jewelry from ancient times to the modern mall.

It may not be as pretty as copper, but I will always have a special place in my heart for the next element, zinc.

Half-Persian 4-in-1 weave chain made from copper electrical wire.

Solid copper heat sink for a CPU chip.

Coppersmiths make cups and pitchers by hand from copper sheet.

$$
{ }^{205} \mathrm{TI} \quad 10^{-7} \%
$$

$$
{ }^{206} \mathrm{~Pb} \quad 10^{-9} \%
$$

$$
{ }^{208} \mathrm{~Pb} \quad 10^{-12} \%
$$LaCe Pr Nd PmSm Eu Cd Tb Dy Ho Er Tm Yb Lu

Isotope

$\left.\left.{ }^{217} \mathrm{U}^{218} \mathrm{U}\right|^{219} \mathrm{U}\right|^{220} \mathrm{U}{ }^{221} \mathrm{U}^{2222} \mathrm{U}^{223} \mathrm{U} \mid{ }^{224} \mathrm{U}$
${ }^{225} \mathrm{U}{ }^{226} \mathrm{U}{ }^{227} \mathrm{U}^{228} \mathrm{U}{ }^{229} \mathrm{U}{ }^{230} \mathrm{U}{ }^{231} \mathrm{U} \mathrm{U}^{232} \mathrm{U} \mathrm{U}^{233} \mathrm{U}$
${ }^{234} \mathrm{U}^{235} \mathrm{U}^{236} \mathrm{U}^{237} \mathrm{U}^{238} \mathrm{U}^{2339} \mathrm{U}^{240} \mathrm{U}^{241} \mathrm{U}^{242} \mathrm{U}$

Chain Direction

$$
\begin{array}{r}
\text { Show chains leading to given nuclide } \square \\
\text { Show chains leading from given nuclide } \\
\text { Trim unlikely branches }
\end{array}
$$

Path Labels

Branch Percentages
Decay Modes
Decay Energies
Line thickness for Branch Percentage
Cumulative branch percentages

Isotope Labels

$$
\begin{aligned}
& \text { Naneses } \\
& \text { Recures } \\
& \square
\end{aligned}
$$

Click any nuclide to center on it.

$$
{ }^{207} \mathrm{~Pb} \quad 100.276 \%
$$

Shakespeare's Sonnets for iPad

Leonardo da Vinci: Anatomy for iPad

The Elements for iPad

Solar System for iPad

Gems and Jewels for iPad
The W
for iPad

Insurance Disclosures

Prospective insureds often have a choice about how truthful to be in their application for insurance. Morality aside, is it ever optimal for applicants to understate the risks they pose? This Demonstration examines this issue by idealizing a world in which the insured chooses how truthful to be with respect to two possible insured events, A and B , the probabilities of which are statistically independent and at most one of which can materialize. By moving the sliders labeled "insurer belief on risks", you determine whether this mapping is accurate (sliders set to 1), underestimates the true expected loss (sliders set below 1), or overestimates the true expected loss (sliders set above 1). You can also

Share: \square in 1 ヒงை 눈

Embed Interactive Demonstration New!
<script type="text/javascript" src="http:/ iDownload Demonstration as CDF *Download Source Coden (preview m)
Files require Woirram CDF Player or Mathematica.

n

Manipulate[Integrate[1/(1-x^n), $x],\{n, 1,10,1\}]$
n +

$$
\begin{aligned}
& \frac{1}{20}\left(2 \sqrt{2(5+\sqrt{5})} \operatorname{ArcTan}\left[\frac{1-\sqrt{5}+4 x}{\sqrt{2(5+\sqrt{5})}}\right]+\right. \\
& 2 \sqrt{10-2 \sqrt{5}} \operatorname{ArcTan}\left[\frac{1+\sqrt{5}+4 x}{\sqrt{10-2 \sqrt{5}}}\right]-4 \log [1-x]- \\
& (-1+\sqrt{5}) \log \left[1-\frac{1}{2}(-1+\sqrt{5}) x+x^{2}\right]+ \\
& \left.(1+\sqrt{5}) \log \left[1+\frac{1}{2}(1+\sqrt{5}) \mathbf{x}+x^{2}\right]\right]
\end{aligned}
$$

2. Wolfram Demonstrations Project

Bring ideas to life

from recreation \& education to research \& industry

Start exploring "

FEATURED DEMONSTRATIONS

CALCULUS: Early transcendentals
 Section 3.1 - Introducing the Derivative

Chapter Preview Now that you are faniliar with limits, the door to calkulus stands open. The fint taxk is to introduce the fundamental concept of dee derivative. Suppose a function f repeesents a quamsity of inceres, say the variable cos of manufacturing an ikm. the population of a country, of the position of an arteing suclititc. The derivative of f is another function, desobed f ' which gives the changing slope of the curve $y f(x)$. Equivalenty, the derivative of f gives the intamanaseous raite of change of f at points in the doenin. We use limist not only to define the derivative, but also to develop efficient nues for finding derivatives. The applications of the derivative-which we introduce along the way -are endess beccuuse almost vererything around us is in 1 state of change, und derivatives dexribe change.
3.1 Introducing the Derivative

In this section we return to the problem of finding the slope of a line tangent to a carve, introdoced at the beginning of Chapter 2 . This concept is important for several reasons.

OuCKCHECK2 In Example 1 , is the slope of the tangent line at $(2,128)$ greacer than or less than the slope at $(1,80)$? <
An altermative formula for the slope of the tangeat line is helpful for future woek. We Bow let $(a, f(a))$ and $(a+k, f(a+k))$ be the coordinates of P and Q. respectively (figure 35). The difference in the x-coordinates of P and Q is $(a+h)-a=h$. Note that Q is located to the right of P if $h>0$ and to the leff of P if $h<0$.

Change location

of point Q

$h=4$
Change location of points P and Q $a=$ reset P \square

FIGURE 3.5

+ Ohtp://www.walkingrandomly.com/pp=3715
Walking Randomly \boldsymbol{n} Interactive
:\#: Authorize PTTS PTT PTS PT sw Pictures
WALKING RANDOMLY
Home \mid About Me \mid Stee Highights Pryw
Interactive 'Slinky Thing'
over at Playing with Mathematica, So
Dut for me, the one that Sol calle, 'Slinky Thing' which could be generated with the following
ParametricPlot $(1) \operatorname{Cos}(t)-\cos [80 t) \sin (t), 2 \sin [t)-\sin [80 \pi t),(t, 0,8)]$
Out of curiosity I parametrised some of the terms and
controllable parameters by turning Sol's equations into
$(\cos (\mathrm{e} t)-\cos (f t) \sin [\mathrm{g} t), 2 \sin (\mathrm{~h} t)-\sin [\mathrm{t})],(\mathrm{t}, 0,8)$

Here are four of my favourites. If you come up with one that you particulariy like then feel free to lot me know what the parameters are in the comment $:-\square_{0}^{0}: 0^{\circ}$:
vor rewneres.

 includo estadisticas de votantes por depatamerto y densidases (islo para la paimera vuita, no se toms en cuenta la proyección culculasa).

Agui algunas captums de pantilala dol lo que se puede hacer con la apicicaciter

Proyectando la Segunda Vuelta

$\mathrm{Cmonow} \longrightarrow$
$70 \quad-|+|+|=|=$

con tov -
$10 \quad-|\cdot|+|=| \square$
-m2011 \longrightarrow
Maple (1
math software (165)
mathcad (16)
nathematica (8)
matiab (11)
xima (2)
Mobile Mathematics (9)
Month of Math Sotware
(13)
NAG Lib
NAG Library (26)
Open Source (20)
parallel programming (13)
physics (9)
pocket pc (9)
pocket pc (9)
probability (1)Bookmarks -
Z Agenda of Mary...Most Visited *Latest Headlines *

Bittinger Calculus

团 Multimedia Library Interactive Figure

Dashboard

$\Theta 00$

A www.mathxl.com/info/MediaPopup.aspx?origin=1\&disciplineGroup=1\&type=Interactive Figure\&loc=Pdf1@aw_bittinger_cwa \&

6.6: Double Integrals and Volume

$\Delta x, y \quad$| 0.1 | 0.25 | 0.5 |
| :--- | :--- | :--- |

Single Column

Show/Hide
Surface

Viewpoint \simeq

Wolfram Education Portal beta

Welcome to the Wolfram Education Portal!

Wolfram has long been a trusted name in education - as the makers of Mathematica, Wolfram|Alpha, and the Wolfram Demonstrations Project. We've created some of the most dynamic teaching and tearning toots available. We are pleased to offer the best of all of our technologies to you here in the Wolfram Education Portal, organized by course. In the portal you'll find a dynamic textbook, lesson plans, widgets, interactive
Demonstrations, and more built by Wolfram education experts. You car take a look at the types of materials we offer below, but to get full access to all materials, you need to sign up for a free account.

The portal is currently in Beta, so feel free to explore the materials we've put together and provide feedback to help us improve the project.

Get Started

Features

Expose your students to a whole new way of learning and understanding algebra through our dynamic teaching tools and materials. Built by our math education experts, you can trust that the materials cover the topics you need to teach.

Textbook

Lesson Plan

Demonstration

wolfram.com

touchpress.com

